资源类型

期刊论文 677

会议视频 4

年份

2024 1

2023 32

2022 61

2021 51

2020 43

2019 54

2018 35

2017 29

2016 28

2015 36

2014 35

2013 32

2012 29

2011 30

2010 26

2009 35

2008 46

2007 37

2006 7

2005 6

展开 ︾

关键词

DX桩 6

个人热管理 2

动力响应 2

卫星 2

数值模拟 2

沉降 2

病毒载量 2

绿色化工 2

聚偏氟乙烯 2

3D生物打印 1

ANSYS 1

Anderson 模型 1

Cu(Inx 1

FLTD型脉冲加速器 1

FRP 聚合物 1

Fluent 1

GDM过滤技术 1

Ga1–x)Se2 1

H7N9 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of loading ratio on flat slab connections at elevated temperature: A numerical study

Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 664-674 doi: 10.1007/s11709-020-0620-9

摘要: For reinforced concrete members subjected to high temperature, the degree of in-service loading, commonly expressed as the loading ratio, can be highly influential on the structural behavior. In particular, the loading ratio may be pivotal in relation to the phenomenon of load-induced thermal strain. Despite its potentially pivotal role, to date, the influence of the loading ratio on both material and structural behavior has not been explored in detail. In practice, real structures experience variation in imposed loading during their service life and it is important to understand the likely response at elevated temperatures across the loading envelope. In this paper, the effect of the loading ratio is numerically investigated at both material and structural level using a validated finite element model. The model incorporates a proposed constitutive model accounting for load-induced thermal strain and this is shown to outperform the existing Eurocode 2 model in terms of accuracy. Using the validated model, the specific case of flats slabs and the associated connections to supporting columns at various loading ratios are explored. For the cases examined, a marked difference in the structural behavior including displacement direction was captured from low to high loading ratios consistent with experimental observations.

关键词: concrete     finite elements     fire     load-induced thermal strain     punching shear    

Mean wind load induced incompatibility in nonlinear aeroelastic simulations of bridge spans

Zhitian ZHANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 605-617 doi: 10.1007/s11709-018-0499-x

摘要: Mean wind response induced incompatibility and nonlinearity in bridge aerodynamics is discussed, where the mean wind and aeroelastic loads are applied simultaneously in time domain. A kind of incompatibility is found during the simultaneous simulation of the mean wind and aeroelastic loads, which leads to incorrect mean wind structural responses. It is found that the mathematic expectations (or limiting characteristics) of the aeroelastic models are fundamental to this kind of incompatibility. In this paper, two aeroelastic models are presented and discussed, one of indicial-function-denoted (IF-denoted) and another of rational-function-denoted (RF-denoted). It is shown that, in cases of low wind speeds, the IF-denoted model reflects correctly the mean wind load properties, and results in correct mean structural responses; in contrast, the RF-denoted model leads to incorrect mean responses due to its nonphysical mean properties. At very high wind speeds, however, even the IF-denoted model can lead to significant deviation from the correct response due to steady aerodynamic nonlinearity. To solve the incompatibility at high wind speeds, a methodology of subtraction of pseudo-steady effects from the aeroelastic model is put forward in this work. Finally, with the method presented, aeroelastic nonlinearity resulted from the mean wind response is investigated at both moderate and high wind speeds.

关键词: bridge     aerodynamics     nonlinear     aeroelastic model     Pseudo-steady     mean wind loads    

Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 359-382 doi: 10.1007/s11709-015-0304-z

摘要: This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

关键词: 3-D cracks     fatigue life     Paris law     thermal load     XFEM    

Load shedding scheme for an interconnected hydro-thermal hybrid system with SMES

D. TYAGI, Ashwani KUMAR, Saurabh CHANANA

《能源前沿(英文)》 2012年 第6卷 第3期   页码 227-236 doi: 10.1007/s11708-012-0198-6

摘要: The frequency of the power system varies based on the load pattern of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Further increase in the load will result in more frequency drop leading to the need of load shedding, if excess generation is not available to cater the need. This paper proposed a methodology in a hybrid thermal-hydro system for finding the required amount of load to be shed for setting the frequency of the system within its minimum allowable limits. The load shedding steps were obtained based on the rate of change of frequency with the increase in the load in both areas. The impact of superconducting magnetic energy storage (SMES) was obtained on load shedding scheme. The comparison of the results was presented on the two-area system.

关键词: critical load     frequency response     load shedding     multi-area system     rate of change of frequency     superconducting magnetic energy storage (SMES) device    

ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal

Yaolin LIN, Wei YANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 550-563 doi: 10.1007/s11708-019-0607-1

摘要: With increasing awareness of sustainability, demands on optimized design of building shapes with a view to maximize its thermal performance have become stronger. Current research focuses more on building envelopes than shapes, and thermal comfort of building occupants has not been considered in maximizing thermal performance in building shape optimization. This paper attempts to develop an innovative ANN (artificial neural network)-exhaustive-listing method to optimize the building shapes and envelope physical properties in achieving maximum thermal performance as measured by both thermal load and comfort hour. After verified, the developed method is applied to four different building shapes in five different climate zones in China. It is found that the building shape needs to be treated separately to achieve sufficient accuracy of prediction of thermal performance and that the ANN is an accurate technique to develop models of discomfort hour with errors of less than 1.5%. It is also found that the optimal solutions favor the smallest window-to-external surface area with triple-layer low-E windows and insulation thickness of greater than 90 mm. The merit of the developed method is that it can rapidly reach the optimal solutions for most types of building shapes with more than two objective functions and large number of design variables.

关键词: ANN (artificial neural network)     exhaustive-listing     building shape     optimization     thermal load     thermal comfort    

DX桩承载特性的模型试验研究

李仲,张航,古源,南勇,陈立宏

《中国工程科学》 2012年 第14卷 第1期   页码 86-89

摘要:

DX桩是近年兴起的新型变截面桩型,其独有的承力盘很好地改善了沉降问题。通过室内小比尺模型试验,得出DX桩承载力及沉降特性的相关规律,为DX桩承载机理的研究提供进一步的试验支持。试验主要采用应变片测量桩身受力情况,桩顶设置百分表测量沉降情况,加载装置采用砝码以及杠杆分级加载。试验主要为与直孔桩对比试验以及DX桩平行试验。试验结果证明DX桩在承载力和沉降方面都优于直孔桩;上盘承载力大于下盘,随桩顶荷载增大,下盘承载所占比重有所提高。

关键词: DX桩     模型试验     应变片     沉降    

A method of determining flame radiation fraction induced by interaction burning of tri-symmetric propane

Jie JI, Junrui DUAN, Huaxian WAN

《能源前沿(英文)》 2022年 第16卷 第6期   页码 1017-1026 doi: 10.1007/s11708-020-0716-x

摘要: The interaction of multiple fires may lead to a higher flame height and more intense radiation flux than a single fire, which increases the possibility of flame spread and risks to the surroundings. Experiments were conducted using three burners with identical heat release rates (HRRs) and propane as the fuel at various spacings. The results show that flames change from non-merging to merging as the spacing decreases, which result in a complex evolution of flame height and merging point height. To facilitate the analysis, a novel merging criterion based on the dimensionless spacing / was proposed. For non-merging flames ( / >0.368), the flame height is almost identical to a single fire; for merging flames ( / ≤0.368), based on the relationship between thermal buoyancy and thrust (the pressure difference between the inside and outside of the flame), a quantitative analysis of the flame height, merging point height, and air entrainment was formed, and the calculated merging flame heights show a good agreement with the measured experimental values. Moreover, the multi-point source model was further improved, and radiation fraction of propane was calculated. The data obtained in this study would play an important role in calculating the external radiation of propane fire.

关键词: flame interaction     air entrainment     flame height     multi-point source model     thermal radiation    

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

《能源前沿(英文)》 2018年 第12卷 第1期   页码 43-71 doi: 10.1007/s11708-018-0524-8

摘要: Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

关键词: vibrational spectroscopy     atomic force microscopy     photo-thermal induced resonance     scanning near-field optical microscopy     tip-enhanced Raman spectroscopy     photo-induced force microscopy     molecular resonances     surface phonon polaritons     energy materials    

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 210-216 doi: 10.1007/s11709-012-0165-7

摘要: A uniaxial tension test is commonly used to determine the mechanical properties of steel, but it has no meaning for the response of the material in a structure. The test was developed as a consensus solution by producers, fabricators, designers and code writers, to have a standard by which similar materials could be compared to a common base. It does not represent the actual behavior of the steel in a structure, and was never intended to do so. To study the true behavior of the structure and how the material responds it would be better to determine the strains and deformations that will take place during actual service condition. Such characteristics reflect the real behavior, whether in the elastic or inelastic range. If stresses or forces are needed, these are easily determined by the value of the strain and the relevant material modulus, along with the type of cross section, whether elastic or inelastic. The paper addresses the properties of a range of structural steels, how these are incorporated into design standards and how the standards define deformation characteristics and demands for bolted and welded connections.

关键词: steel     stress-strain characteristics     tension test     strain design     actual behavior     improved design codes    

TA2板料激光热应力弯曲成形及其力学性能研究

周益军,张永康,游文明

《中国工程科学》 2007年 第9卷 第10期   页码 40-44

摘要:

用HVS-1000显微硬度测试仪、X-350A型X射线应力测定仪,以2.5 kW SM2000SM快轴流CO2激光器对0.6 mm厚的TA2板料进行扫描,按照正交试验理论安排成形工艺参数,研究了TA2板料弯曲成形时主要工艺参数对弯曲角度的影响,以及试样表面残余应力的分布和试样断面上的显微硬度变化。结果表明:正交试验中的4个工艺参数的作用是不同的,按其变化对弯曲变形量影响的大小排序,依次是扫描次数、光斑直径、激光束功率、扫描速度;成形参数对试样表面的残余应力分布也存在一定的影响;试样变形区断面上的显微硬度变化呈现出一定的规律。

关键词: 激光技术     热应力     板料弯曲成形     残余应力     显微硬度    

Estimation of composite load model with aggregate induction motor dynamic load for an isolated hybrid

Nitin Kumar SAXENA,Ashwani Kumar SHARMA

《能源前沿(英文)》 2015年 第9卷 第4期   页码 472-485 doi: 10.1007/s11708-015-0373-7

摘要: It is well recognized that the voltage stability of a power system is affected by the load model and hence, to effectively analyze the reactive power compensation of an isolated hybrid wind-diesel based power system, the loads need to be considered along with the generators in a transient analysis. This paper gives a detailed mathematical modeling to compute the reactive power response with small voltage perturbation for composite load. The composite load is a combination of the static and dynamic load model. To develop this composite load model, the exponential load is used as a static load model and induction motors (IMs) are used as a dynamic load model. To analyze the dynamics of IM load, the fifth, third and first order model of IM are formulated and compared using differential equations solver in Matlab coding. Since the decentralized areas have many small consumers which may consist large numbers of IMs of small rating, it is not realistic to model either a single large rating unit or all small rating IMs together that are placed in the system. In place of using a single large rating IM, a group of motors are considered and then the aggregate model of IM is developed using the law of energy conservation. This aggregate model is used as a dynamic load model. For different simulation studies, especially in the area of voltage stability with reactive power compensation of an isolated hybrid power system, the transfer function of the composite load is required. The transfer function of the composite load is derived in this paper by successive derivation for the exponential model of static load and for the fifth and third order IM dynamic load model using state space model.

关键词: isolated hybrid power system (IHPS)     composite load model     static load     dynamic load     induction motor load model     aggregate load    

Full-field dynamic strain reconstruction of an aero-engine blade from limited displacement responses

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0731-1

摘要: Blade strain distribution and its change with time are crucial for reliability analysis and residual life evaluation in blade vibration tests. Traditional strain measurements are achieved by strain gauges (SGs) in a contact manner at discrete positions on the blades. This study proposes a method of full-field and real-time strain reconstruction of an aero-engine blade based on limited displacement responses. Limited optical measured displacement responses are utilized to reconstruct the full-field strain. The full-field strain distribution is in-time visualized. A displacement-to-strain transformation matrix is derived on the basis of the blade mode shapes in the modal coordinate. The proposed method is validated on an aero-engine blade in numerical and experimental cases. Three discrete vibrational displacement responses measured by laser triangulation sensors are used to reconstruct the full-field strain over the whole operating time. The reconstructed strain responses are compared with the results measured by SGs and numerical simulation. The high consistency between the reconstructed and measured results demonstrates the accurate strain reconstructed by the method. This paper provides a low-cost, real-time, and visualized measurement of blade full-field dynamic strain using displacement response, where the traditional SGs would fail.

关键词: aero-engine blade     displacement response     dynamic strain reconstruction     mode shape     strain gauge    

Strain and process engineering toward continuous industrial fermentation

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1336-1353 doi: 10.1007/s11705-022-2284-6

摘要: Most current biotechnology industries are based on batch or fed-batch fermentation processes, which often show low productivity and high production costs compared to chemical processes. To increase the economic competitiveness of biological processes, continuous fermentation technologies are being developed that offer significant advantages in comparison with batch/fed-batch fermentation processes, including: (1) removal of potential substrates and product inhibition, (2) prolonging the microbial exponential growth phase and enhancing productivity, and (3) avoiding repeated fermentation preparation and lowering operation and installation costs. However, several key challenges should be addressed for the industrial application of continuous fermentation processes, including (1) contamination of the fermentation system, (2) degeneration of strains, and (3) relatively low product titer. In this study, we reviewed and discussed metabolic engineering and synthetic biology strategies to address these issues.

关键词: continuous fermentation     productivity     contamination     strain degeneration     metabolic engineering    

Behavior of steel fiber–reinforced high-strength concrete at medium strain rate

Chujie JIAO, Wei SUN, Shi HUAN, Guoping JIANG

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 131-136 doi: 10.1007/s11709-009-0027-0

摘要: Impact compression experiments for the steel fiber–reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s , the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.

关键词: steel fiber–reinforced high-strength concrete (SFRHSC)     high strain rates     split Hopkinson press bar (SHPB)     strain rate hardening effects    

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 187-197 doi: 10.1007/s11465-015-0339-9

摘要:

In this paper, for the first time, the modified strain gradient theory is used as a new size-dependent Kirchhoff micro-plate model to study the effect of interlayer van der Waals (vdW) force for the vibration analysis of multilayered graphene sheets (MLGSs). The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. After obtaining the governing equations based on modified strain gradient theory via principle of minimum potential energy, as only infinitesimal vibration is considered, the net pressure due to the vdW interaction is assumed to be linearly proportional to the deflection between two layers. To solve the governing equation subjected to the boundary conditions, the Fourier series is assumed for w=w(xy). To show the accuracy of the formulations, present results in specific cases are compared with available results in literature and a good agreement can be seen. The results indicate that the present model can predict prominent natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.

关键词: graphene     van der Waals (vdW) force     modi- fied strain gradient elasticity theory     size effect parameter    

标题 作者 时间 类型 操作

Influence of loading ratio on flat slab connections at elevated temperature: A numerical study

Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM

期刊论文

Mean wind load induced incompatibility in nonlinear aeroelastic simulations of bridge spans

Zhitian ZHANG

期刊论文

Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV

期刊论文

Load shedding scheme for an interconnected hydro-thermal hybrid system with SMES

D. TYAGI, Ashwani KUMAR, Saurabh CHANANA

期刊论文

ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal

Yaolin LIN, Wei YANG

期刊论文

DX桩承载特性的模型试验研究

李仲,张航,古源,南勇,陈立宏

期刊论文

A method of determining flame radiation fraction induced by interaction burning of tri-symmetric propane

Jie JI, Junrui DUAN, Huaxian WAN

期刊论文

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

期刊论文

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

期刊论文

TA2板料激光热应力弯曲成形及其力学性能研究

周益军,张永康,游文明

期刊论文

Estimation of composite load model with aggregate induction motor dynamic load for an isolated hybrid

Nitin Kumar SAXENA,Ashwani Kumar SHARMA

期刊论文

Full-field dynamic strain reconstruction of an aero-engine blade from limited displacement responses

期刊论文

Strain and process engineering toward continuous industrial fermentation

期刊论文

Behavior of steel fiber–reinforced high-strength concrete at medium strain rate

Chujie JIAO, Wei SUN, Shi HUAN, Guoping JIANG

期刊论文

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

期刊论文